Auditing
Training
Consulting

Best Practices

As businesses—no matter how diverse—embark on their Conversational AI journeys, they face similar challenges and complexities. Conversation design best practices can be of invaluable help, guiding organizations towards successful implementation of AI assistants.

Watch video

Benefits of Conversational AI best practices

Conversational AI is by nature a technological challenge, and success is heavily dependent on execution. It’s essential to tackle questions like ‘Which conversations should you automate?’ and ‘How can you increase the quality of your designs?’.

Let’s look at some key chatbot best practices that will allow you to get the most out of Conversational AI. These best practices have been integrated into the proven CDI method.

The benefits you can expect from applying these best practices:

  • Accelerated time to value

    Organizations can speed up their Conversational AI implementation, minimizing delays and maximizing the benefits.

  • Avoid costly mistakes

    By learning from the experiences of other organizations, you can avoid missteps that could derail your Conversational AI initiatives and prevent unnecessary costs and time.

  • Great jump off point to master Conversational AI

    Conversational AI is an art, not a science. And each organization has its own context, influencing what needs to happen to support delightful conversations. But best practices are the best jump off point to learning to apply Conversational AI well in your organization.

Elements of best practice in Conversational AI

Defining and monitoring the right Key Performance Indicators (KPIs) is critical for ensuring the ongoing success of your Conversational AI applications. Continuously testing and refining your AI systems ensures they stay aligned with business objectives, adapt to user feedback, and maintain high-performance standards.


Continuous (NLU) refinement

Regularly updating NLU models based on user interactions and feedback improves the system's ability to accurately interpret user intent. Our AI Trainers are specialists in different types of analysis and optimization. For example running both blind tests and K-fold tests and leveraging the results to improve your NLU models.

Continuous dialogue design improvement

Similarly to the above: AI assistant content isn’t static. Don’t stop updating once your bot is live. Instead you should always be looking to improve based on customer feedback and customer interactional behavior.

Contextual awareness

Leveraging contextual cues from previous interactions to tailor responses and anticipate user needs can help create more personalized and relevant conversations.

Multi-channel integration

You’ve heard it before: be where your customers are. Ensuring seamless integration across various communication channels like web chat, messaging apps, and voice interfaces enhances accessibility and customer experience.

Compliance and security measures

Implementing robust data protection protocols and complying with relevant regulations safeguard user privacy and build trust in the AI system.

Performance monitoring and analytics

Tracking key performance indicators (KPIs) such as user satisfaction, completion rates, and response times enables continuous monitoring and optimization of conversational AI systems.

Scalability and flexibility

Designing AI architectures that can scale seamlessly to accommodate growing user demands and adapt to evolving business requirements ensures long-term viability and cost-effectiveness.

Ethical AI design

Incorporating ethical considerations into AI development, such as transparency, fairness, and accountability, promotes responsible AI usage and mitigates potential biases or harm.

User-centric design principles

Prioritizing user needs and preferences in the design process, including accessibility features and inclusive language, fosters positive user experiences for diverse audiences.

Knowledge management and updates

Establishing procedures for managing knowledge bases and regularly updating content ensures that AI systems remain accurate, relevant, and up-to-date over time.

Cross-functional collaboration

Facilitating collaboration between development teams, subject matter experts, and end-users fosters interdisciplinary insights and ensures alignment with organizational goals and user expectations.

Additional aspects of best practice to consider

Exploring additional aspects and variations in best practices depending on factors like people, technology, and application can provide you deeper insights into optimizing conversational AI solutions. Here are some considerations:


User Demographics and Preferences

Tailoring Conversational AI experiences to different user demographics, such as age, language proficiency, and cultural background, can enhance engagement and satisfaction. For example, younger users might prefer informal language and emojis, while older users may prefer more formal interactions. A best practice is to develop a AI Assistant persona that meets a weighted average of customer needs.

Industry-specific considerations

Best practices may vary across industries due to regulatory requirements, customer expectations, and business processes. For instance, healthcare applications of Conversational AI must adhere to strict privacy regulations like HIPAA, while retail applications may focus on upselling and cross-selling opportunities.

Technology stack and infrastructure

The choice of underlying technologies, such as natural language processing (NLP) engines, cloud platforms, and integration tools, can influence best practices in system architecture, scalability, and performance optimization. Different technologies may require specific approaches to data management, model training, and deployment.

Application context and use cases

The intended use cases and contexts of Conversational AI solutions can shape best practices in dialogue design, user interface (UI) elements, and functionality. For example, customer support chatbots may prioritize quick issue resolution and escalation paths, while virtual assistants for smart homes may focus on intuitive voice commands and home automation tasks.

Team composition and skillsets

The composition of development teams, including roles like conversation designers, data scientists, software engineers, and domain experts, can influence best practices in collaboration, communication, and knowledge sharing. Cross-functional teams with diverse skill sets are often better equipped to address complex challenges and iterate on solutions effectively.

Organizational Culture and Strategy

Organizational culture, leadership priorities, and strategic objectives play a significant role in shaping best practices for Conversational AI adoption. Companies with a culture of innovation and experimentation may emphasize agile development methodologies and rapid prototyping, while others may prioritize risk mitigation and compliance.

Feedback Loops and Iterative Improvement

Establishing feedback mechanisms and processes for collecting user feedback, monitoring performance metrics, and iterating on AI models is essential for continuous improvement. Best practices should incorporate feedback loops at various stages of development, from initial design iterations to post-deployment optimization.


In summary, exploring the nuances and variations in best practices for Conversational AI across different contexts, stakeholders, and technologies can help organizations tailor their approaches to specific needs and maximize the value of their AI investments.

Implementing Conversational AI (CAI) best practices

Following the CDI method will help you conduct your project according to your needs and targets, whilst leveraging proven best practices. The workflow is split into three steps, but should be considered a circular, repetitive flow.

  • Strategize

  • Design

  • Build

Why do we consider it circular? Once built, the interactions with customers will feedback into your designs, and likely even influence strategy.

As you can see, there are many steps involved to ensure the successful deployment and optimization of chatbots or virtual assistants:

Define objectives

Clearly outline the goals and outcomes you intend to achieve with your Conversational AI implementation.

Understand user needs

Conduct in-depth research to comprehend user preferences, pain points, and common queries.

Select the right technology

Choose a suitable Conversational AI platform that aligns with your business requirements, technical capabilities, and budget.

Design conversational flows

Using CDI’s established design methods will allow you to create intuitive, human-centric conversation flows that guide users effectively.

Train the AI model

Use machine learning algorithms to train the AI model for accurate interpretation of user inputs.

Test and iterate

Conduct comprehensive testing across different channels, gather feedback, and iterate on the design and functionality.

Deploy across channels

Ensure seamless integration and consistent user experience across multiple channels.

Monitor performance

Track key performance metrics and analyze user engagement, response times, and satisfaction scores.

Optimize continuously

Continuously refine the solution based on user feedback, data analysis, and evolving business requirements.

How can CDI help?

CDI provides comprehensive training, live support, coaching, and consultancy services to empower businesses in developing Conversational AI solutions that adhere to best practices. Our experienced team guides you through every step of the process, ensuring your implementation is efficient, effective, and aligned with industry standards.


Hans Van Dam
1:16 min

Partner with CDI

With our curated selection of partners, you can trust that you're getting access to the best-in-class solutions that meet your needs and propel your business forward.

Become a Partner

Learn more about Conversational AI best practices

CXD for WhatsApp

CXD for WhatsApp

Leverage the power of WhatsApp Business to connect and communicate with people. Learn the principles unique to designing for WhatsApp’s interface, as well as the fundamentals of good conversation design.
Persona Development Module

Persona Development Module

Learn about how to create or refine your conversational AI persona. Learn how to create content to flesh out that personality and make your conversational AI even more engaging.
Behavior Design Module

Behavior Design Module

Learn what makes people act, and learn how to apply behavioral psychology in your Conversational AI. Create great experiences for your customers.
CDI Workflow

CDI Workflow

Learn the Conversation Design Institute workflow with extra attention to human-centricity, sample dialogue, flowchart design, wizard-of-oz testing, and long-tail design.

Training and Certification

Discover our courses and certification programs for creating winning AI Assistants and enterprise capabilities. Get started today.

Browse CDI’s entire library of 500+ videos

AI Ethics

AI Ethics

Learn to integrate ethical principles and compliance into AI Assistants with our AI Ethics Course Online. Designed for conversation designers, AI trainers, and business stakeholders, it covers conversational AI social and ethical considerations, risk...

5 hours
1 modules
AI Trainer

AI Trainer

In this AI Trainer Course, learn to train AI Assistants to understand human language. Designed for those building human-centric, goal-oriented assistants, it covers conversational AI training, language model nuances, and dialogue implementation. Whet...

8 hours
3 modules
CDI Method Foundation

CDI Method Foundation

Learn CDI’s CAI Method—the test-and-tried Conversational AI workflow helping teams worldwide build human-centric, inclusive AI Assistants. This course is the starting point for managers and functional teams wanting to learn about creating great Conve...

9 hours
1 modules
Conversation Designer

Conversation Designer

This technology-agnostic course teaches you to design human-centric, inclusive, and goal-oriented AI Assistants. Learn strategies, methods, and design patterns for creating great conversational experiences—applicable to all Conversational AI use case...

10 hours
4 modules

Browse CDI’s entire library of 500+ videos

AI Ethics

AI Ethics

Learn to integrate ethical principles and compliance into AI Assistants with our AI Ethics Course Online. Designed for conversation designers, AI trainers, and business stakeholders, it covers conversational AI social and ethical considerations, risk...

5 hours
1 modules
AI Trainer

AI Trainer

In this AI Trainer Course, learn to train AI Assistants to understand human language. Designed for those building human-centric, goal-oriented assistants, it covers conversational AI training, language model nuances, and dialogue implementation. Whet...

8 hours
3 modules
CDI Method Foundation

CDI Method Foundation

Learn CDI’s CAI Method—the test-and-tried Conversational AI workflow helping teams worldwide build human-centric, inclusive AI Assistants. This course is the starting point for managers and functional teams wanting to learn about creating great Conve...

9 hours
1 modules
Conversation Designer

Conversation Designer

This technology-agnostic course teaches you to design human-centric, inclusive, and goal-oriented AI Assistants. Learn strategies, methods, and design patterns for creating great conversational experiences—applicable to all Conversational AI use case...

10 hours
4 modules

Browse CDI’s entire library of 500+ videos

AI Ethics

AI Ethics

Learn to integrate ethical principles and compliance into AI Assistants with our AI Ethics Course Online. Designed for conversation designers, AI trainers, and business stakeholders, it covers conversational AI social and ethical considerations, risk...

5 hours
1 modules
AI Trainer

AI Trainer

In this AI Trainer Course, learn to train AI Assistants to understand human language. Designed for those building human-centric, goal-oriented assistants, it covers conversational AI training, language model nuances, and dialogue implementation. Whet...

8 hours
3 modules
CDI Method Foundation

CDI Method Foundation

Learn CDI’s CAI Method—the test-and-tried Conversational AI workflow helping teams worldwide build human-centric, inclusive AI Assistants. This course is the starting point for managers and functional teams wanting to learn about creating great Conve...

9 hours
1 modules
Conversation Designer

Conversation Designer

This technology-agnostic course teaches you to design human-centric, inclusive, and goal-oriented AI Assistants. Learn strategies, methods, and design patterns for creating great conversational experiences—applicable to all Conversational AI use case...

10 hours
4 modules

Work with us

Our seasoned experts help brands to design, build and maintain best-in-class AI assistants. So if you want to hit the ground running or you need help scaling your team, get in touch.